Graduate Program in Economics, Binghamton University

ECON 603: Advanced Mathematical Analysis for Economists

Diagnostic Exam

Question 1

- a) With reference to the function f: R = R,
 - i. State the Mean Value Theorem of the differential calculus (MVT);
 - ii. State the Taylor Series Expansion of f(x) about the point x = a

Carefully demonstrate that the MVT is a special case of the Taylor Series.

- b) Use the Taylor Series to prove that f'(a) = 0 is a necessary condition for the function f to have a relative extrema at (a, f(a)). Furthermore, prove that if f'(a) = f''(a) = 0 and f'''(a) = 0, then the point (a, f(a)) is neither a relative minimum nor a relative maximum point.
- c) By considering the Taylor Series expansion of $f(x) = e^x$ about x = 0, show that

 $e \ 1 \ 1 \ \frac{1}{2} \ \frac{1}{6} \ R$

Where $R = \frac{1}{8}$

Question 2

Suppose that aggregate consumption in period t, C_t is a linear function of aggregate income in the previous period, Y_t , that is,

$$C_t \quad A \quad BY_{t-1}$$

Question 3

Consider a representative agent consumes two goods, economic books and bread. Her utility function is given by U(X,Y) = X = Y, where X stands for the number of economic books and Y stand for the number of bread. and are such that 1.

a) By substituting for e_t in equation (*) and then eliminating e_{t-1} from the resulting equation, show that

 $y_{t 2}$ () $y_{t 1}$ y_t $u_{t 2}$

b) Given that $\frac{1}{2}$ and $u_t = 0$, solve the difference equation that you obtained in part (a).

Question 6

Given the following non-linear maximization problem:

Maximize
$$Z \quad 2x_1^2 \quad 8x_2^2$$

Subject to $\begin{array}{c} x_1^2 \quad x_2^2 \quad 16\\ x_1, x_2 \quad 0 \end{array}$

a) Formulate the Lagrangian function for this problem.